
4 The Dirac equation

This chapter provides an introduction to the Dirac equation, which is the rel-
ativistic formulation of quantum mechanics used to describe the fundamental
fermions of the Standard Model. Particular emphasis is placed on the free-
particle solutions to the Dirac equation that will be used to describe fermions
in the calculations of cross sections and decay rates in the following chapters.

4.1 The Klein–Gordon equation

One of the requirements for a relativistic formulation of quantum mechanics is
that the associated wave equation is Lorentz invariant. The Schrödinger equation,
introduced in Section 2.3.1, is first order in the time derivative and second order
in the spatial derivatives. Because of the different dependence on the time and
space coordinates, the Schrödinger equation is clearly not Lorentz invariant, and
therefore cannot provide a description of relativistic particles. The non-invariance
of the Schrödinger equation under Lorentz transformations is a consequence its
construction from the non-relativistic relationship between the energy of a free
particle and its momentum

E =
p2

2m
.

The first attempt at constructing a relativistic theory of quantum mechanics was
based on the Klein–Gordon equation. The Klein–Gordon wave equation is obtained
by writing the Einstein energy–momentum relationship,

E2 = p2 + m2,

in the form of operators acting on a wavefunction,

Ê2ψ(x, t) = p̂2ψ(x, t) + m2ψ(x, t).

Using the energy and momentum operators identified in Section 2.3.1,

p̂ = −i∇ and Ê = i
∂

∂t
,

80



81 4.1 The Klein–Gordon equation

this leads to the Klein–Gordon wave equation,

∂2ψ

∂t2 = ∇
2ψ − m2ψ. (4.1)

The Klein–Gordon equation, which is second order in both space and time deriva-
tives, can be expressed in the manifestly Lorentz-invariant form

(∂ µ∂µ + m2)ψ = 0, (4.2)

where

∂ µ∂µ ≡
∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2
− ∂2

∂z2 ,

is the Lorentz-invariant scalar product of two four-vectors.
The Klein–Gordon equation has plane wave solutions,

ψ(x, t) = Nei(p·x−Et), (4.3)

which when substituted into (4.2) imply that

E2ψ = p2ψ + m2ψ,

and thus (by construction) the plane wave solutions to the Klein–Gordon equa-
tion satisfy the Einstein energy–momentum relationship, where the energy of the
particle is related to its momentum by

E = ±
√

p2 + m2.

In classical mechanics, the negative energy solutions can be dismissed as being
unphysical. However, in quantum mechanics all solutions are required to form a
complete set of states, and the negative energy solutions simply cannot be dis-
carded. Whilst it is not clear how the negative energy solutions should be inter-
preted, there is a more serious problem with the associated probability densities.
The expressions for the probability density and probability current for the Klein–
Gordon equation can be identified following the procedure used in Section 2.3.2.
Taking the difference ψ∗ × (4.1) − ψ × (4.1)∗ gives

ψ∗
∂2ψ

∂t2 − ψ
∂2ψ∗

∂t2 = ψ
∗(∇2ψ − m2ψ) − ψ(∇2ψ∗ − m2ψ∗)

⇒ ∂

∂t

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
= ∇ · (ψ∗∇ψ − ψ∇ψ∗). (4.4)

Comparison with the continuity equation of (2.20) leads to the identification of
the probability density and probability current for solutions to the Klein–Gordon
equation as

ρ = i
(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
and j = −i(ψ∗∇ψ − ψ∇ψ∗), (4.5)



82 The Dirac equation

where the factor of i is included to ensure that the probability density is real. For a
plane wave solution, the probability density and current are

ρ = 2|N|2 E and j = 2|N|2 p,

which can be written as a four-vector j µKG = 2|N|2 p µ. The probability density is
proportional to the energy of the particle, which is consistent with the discussion
of relativistic length contraction of Section 3.2.1. However, this implies that the
negative energy solutions have unphysical negative probability densities. From
the presence of negative probability density solutions, it can be concluded that the
Klein–Gordon equation does not provide a consistent description of single particle
states for a relativistic system. It should be noted that this problem does not exist in
quantum field theory, where the Klein–Gordon equation is used to describe multi-
particle excitations of a spin-0 quantum field.

4.2 The Dirac equation

The apparent problems with the Klein–Gordon equation led Dirac (1928) to search
for an alternative formulation of relativistic quantum mechanics. The resulting
wave equation not only solved the problem of negative probability densities, but
also provided a natural description of the intrinsic spin and magnetic moments of
spin-half fermions. Its development represents one of the great theoretical break-
throughs of the twentieth century.

The requirement that relativistic particles satisfy E2 =p2 +m2 results in the
Klein–Gordon wave equation being second order in the derivatives. Dirac looked
for a wave equation that was first order in both space and time derivatives,

Êψ = (α · p̂ + βm)ψ, (4.6)

which in terms of the energy and momentum operators can be written

i
∂

∂t
ψ =

(
−iαx

∂

∂x
− iαy

∂

∂y
− iαz

∂

∂z
+ βm

)
ψ. (4.7)

If the solutions of (4.7) are to represent relativistic particles, they must also sat-
isfy the Einstein energy–momentum relationship, which implies they satisfy the
Klein–Gordon equation. This requirement places strong constraints on the possi-
ble nature of the constants α and β in (4.6). The conditions satisfied by α and β can
be obtained by “squaring” (4.7) to give

−∂
2ψ

∂t2 =

(
iαx

∂

∂x
+ iαy

∂

∂y
+ iαz

∂

∂z
− βm

) (
iαx

∂

∂x
+ iαy

∂

∂y
+ iαz

∂

∂z
− βm

)
ψ,
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which, when written out in gory detail, is

∂2ψ

∂t2 = α
2
x
∂2ψ

∂x2 + α
2
y
∂2ψ

∂y2
+ α2

z
∂2ψ

∂z2 − β
2m2ψ

+ (αxαy + αyαx)
∂2ψ

∂x∂y
+ (αyαz + αzαy)

∂2ψ

∂y∂z
+ (αzαx + αxαz)

∂2ψ

∂z∂x

+ i(αxβ + βαx)m
∂ψ

∂x
+ i(αyβ + βαy)m

∂ψ

∂y
+ i(αzβ + βαz)m

∂ψ

∂z
. (4.8)

In order for (4.8) to reduce to the Klein–Gordon equation,

∂2ψ

∂t2 =
∂2ψ

∂x2 +
∂2ψ

∂y2
+
∂2ψ

∂z2 − m2ψ,

the coefficients α and β must satisfy

α2
x = α

2
y = α

2
z = β

2 = I,

α j β + β α j = 0,

α j αk + αk α j = 0 ( j ! k),

(4.9)

(4.10)

(4.11)

where I represents unity. The anticommutation relations of (4.10) and (4.11) can-
not be satisfied if the αi and β are normal numbers. The simplest mathematical
objects that can satisfy these anticommutation relations are matrices. From the
cyclic property of traces, Tr(ABC)=Tr (BCA), and the requirements that β2 = I and
αi β = −β αi, it is straightforward to show that the αi and βmatrices must have trace
zero:

Tr (αi) = Tr (αi β β) = Tr (β αi β) = −Tr (αi β β) = −Tr (αi) .

Furthermore, it can be shown that the eigenvalues of the αi and β matrices are ±1.
This follows from multiplying the eigenvalue equation,

αiX = λX,

by αi and using α2
i = I, which implies

α2
i X = λαiX ⇒ X = λ2X,

and therefore λ = ±1. Because the sum of the eigenvalues of a matrix is equal to its
trace, and here the matrices have eigenvalues of either +1 or −1, the only way the
trace can be zero is if the αi and β matrices are of even dimension. Finally, because
the Dirac Hamiltonian operator of (4.6),

ĤD = (α · p̂ + βm),
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must be Hermitian in order to have real eigenvalues, the α and β matrices also must
be Hermitian,

αx = α
†
x, αy = α

†
y, αz = α

†
z and β = β†. (4.12)

Hence αx, αy, αz and β are four mutually anticommuting Hermitian matrices of
even dimension and trace zero. Because there are only three mutually anticom-
muting 2 × 2 traceless matrices, for example the Pauli spin-matrices, the lowest
dimension object that can represent αx, αy, αz and β are 4 × 4 matrices. Therefore,
the Dirac Hamiltonian of (4.6) is a 4 × 4 matrix of operators that must act on a
four-component wavefunction, known as a Dirac spinor,

ψ =




ψ1

ψ2

ψ3

ψ4



.

The consequence of requiring the quantum-mechanical wavefunctions for a rela-
tivistic particle satisfy the Dirac equation and be consistent with the Klein–Gordon
equation, is that the wavefunctions are forced to have four degrees of freedom.
Before leaving this point, it is worth noting that, if all particles were massless,
there would be no need for the β term in (4.7) and the α matrices could be rep-
resented by the three Pauli spin-matrices. In this Universe without mass, it would
be possible to describe a particle by a two-component object, known as a Weyl
spinor.

The algebra of the Dirac equation is fully defined by the relations of (4.9)–(4.11)
and (4.12). Nevertheless, it is convenient to introduce an explicit form for αx, αy,
αz and β. The conventional choice is the Dirac–Pauli representation, based on the
familiar Pauli spin-matrices,

β =

(
I 0
0 −I

)
and αi =

(
0 σi

σi 0

)
, (4.13)

with

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

This is only one possible representation of the α and β matrices. The matrices α′i =
UαiU−1 and β = UβU−1, generated by any 4 × 4 unitary matrix U, are Hermitian
and also satisfy the necessary anticommutation relations. The physical predictions
obtained from the Dirac equation will not depend on the specific representation
used; the physics of the Dirac equation is defined by the algebra satisfied by αx,
αy, αz and β, not by the specific representation.
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4.3 Probability density and probability current

The expressions for the probability density and probability current for solutions
of the Dirac equation can be obtained following a similar procedure to that used
for the Schrödinger and Klein–Gordon equations. Since the wavefunctions are
now four-component spinors, the complex conjugates of wavefunctions have to
be replaced by Hermitian conjugates, ψ∗ →ψ† = (ψ∗)T . The Hermitian conjugate
of the Dirac equation,

−iαx
∂ψ

∂x
− iαy

∂ψ

∂y
− iαz

∂ψ

∂z
+ mβψ = +i

∂ψ

∂t
, (4.14)

is simply

+i
∂ψ†

∂x
α†x + i

∂ψ†

∂y
α†y + i

∂ψ†

∂z
α†z + mψ†β† = −i

∂ψ†

∂t
. (4.15)

Using the fact that the α and β matrices are Hermitian, the combination of ψ† ×
(4.14) − (4.15) × ψ gives

ψ†
(
−iαx

∂ψ

∂x
− iαy

∂ψ

∂y
− iαz

∂ψ

∂z
+ βmψ

)

−
(
i
∂ψ†

∂x
αx + i

∂ψ†

∂y
αy + i

∂ψ†

∂z
αz + mψ†β

)
ψ = iψ†

∂ψ

∂t
+ i

∂ψ†

∂t
ψ.

(4.16)

Equation (4.16) can be simplified by writing

ψ†αx
∂ψ

∂x
+
∂ψ†

∂x
αxψ ≡

∂(ψ†αxψ)
∂x

and ψ†
∂ψ

∂t
+
∂ψ†

∂t
ψ ≡ ∂(ψ†ψ)

∂t
,

giving

∇ · (ψ†αψ) +
∂(ψ†ψ)
∂t

= 0,

where ψ† = (ψ∗1,ψ
∗
2,ψ

∗
3,ψ

∗
4). By comparison with the continuity equation of (2.20),

the probability density and probability current for solutions of the Dirac equation
can be identified as

ρ = ψ†ψ and j = ψ†αψ. (4.17)

In terms of the four components of the Dirac spinors, the probability density is

ρ = ψ†ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2,
and thus, all solutions of the Dirac equation have positive probability density. By
requiring that the wavefunctions satisfy a wave equation linear in both space and
time derivatives, in addition to being solutions of the Klein–Gordon equation, Dirac
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solved the perceived problem with negative probability densities. The price is that
particles now have to be described by four-component wavefunctions. The Dirac
equation could have turned out to be a purely mathematical construction with-
out physical relevance. However, remarkably, it can be shown that the additional
degrees of freedom of the four-component wavefunctions naturally describe the
intrinsic angular momentum of spin-half particles and antiparticles. The proof that
the Dirac equation provides a natural description of spin-half particles is given in
the following starred section. It is fairly involved and the details are not essential
to understand the material that follows.

4.4 *Spin and the Dirac equation

In quantum mechanics, the time dependence of an observable corresponding to an
operator Ô is given by (2.29),

dO
dt
=

d
dt
〈Ô〉 = i〈ψ|[Ĥ, Ô]|ψ〉.

Therefore, if the operator for an observable commutes with the Hamiltonian of
the system, it is a constant of the motion. The Hamiltonian of the free-particle
Schrödinger equation,

ĤS E =
p̂2

2m
,

commutes with the angular momentum operator L̂= r̂× p̂, and thus angular
momentum is a conserved quantity in non-relativistic quantum mechanics. For the
free-particle Hamiltonian of the Dirac equation,

ĤD = α · p̂ + βm, (4.18)

the corresponding commutation relation is

[ĤD, L̂] = [α · p̂ + βm, r̂ × p̂] = [α · p̂, r̂ × p̂]. (4.19)

This can be evaluated by considering the commutation relation for a particular
component of L̂, for example

[ĤD, L̂x] = [α · p̂, (r̂ × p̂)x] = [αx p̂x + αy p̂y + αz p̂z, ŷ p̂z − ẑ p̂y]. (4.20)

The only terms in (4.20) that are non-zero arise from the non-zero position–
momentum commutation relations

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i,
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giving

[ĤD, L̂x] = αy[ p̂y, ŷ] p̂z − αz[ p̂z, ẑ] p̂y
= −i(αy p̂z − αz p̂y)

= −i(α × p̂)x,

where (α × p̂)x is the x-component of α × p̂. Generalising this result to the other
components of L̂ gives

[ĤD, L̂] = −iα × p̂. (4.21)

Hence, for a particle satisfying the Dirac equation, the “orbital” angular momentum
operator L̂ does not commute with the Dirac Hamiltonian, and therefore does not
correspond to a conserved quantity.

Now consider the 4 × 4 matrix operator Ŝ formed from the Pauli spin-matrices

Ŝ ≡ 1
2 Σ̂ ≡ 1

2

(
σ 0
0 σ

)
, (4.22)

with

Σ̂x =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



, Σ̂y =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0




and Σ̂z =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



.

Because the α-matrices in the Dirac–Pauli representation and the Σ-matrices are
both derived from the Pauli spin-matrices, they have well-defined commutation
relations. Consequently, the commutator [αi, Σ̂x] can be expressed in terms of the
commutators of the Pauli spin-matrices. Writing the 4 × 4 matrices in 2 × 2 block
form,

[αi, Σ̂x] =
(

0 σi

σi 0

) (
σx 0
0 σx

)
−

(
σx 0
0 σx

) (
0 σi

σi 0

)

=

(
0 [σi,σx]

[σi,σx] 0

)
. (4.23)

The commutation relations,

[σx,σx] = 0, [σy,σx] = −2iσz and [σz,σx] = 2iσy,

imply that (4.23) is equivalent to

[αx,Σx] = 0, (4.24)

[αy,Σx] =
(

0 −2iσz

−2iσz 0

)
= −2iαz, (4.25)

[αz,Σx] =
(

0 2iσy
2iσy 0

)
= 2iαy. (4.26)
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Now consider the commutator of Σ̂x with the Dirac Hamiltonian

[ĤD,Σx] = [α · p̂ + βm,Σx].

It is straightforward to show that [β, Σ̂x] = 0 and hence

[ĤD, Σ̂x] = [α · p̂, Σ̂x] = [αx p̂x + αy p̂y + αz p̂z, Σ̂x]

= p̂x[αx, Σ̂x] + p̂y[αy, Σ̂x] + p̂z[αz, Σ̂x]. (4.27)

Using the commutation relations of (4.24)–(4.26) implies that

[ĤD, Σ̂x] = −2ip̂yαz + 2ip̂zαy

= 2i(α × p̂)x.

Generalising this derivation to the y and z components of [ĤD, Σ̂] and using Ŝ = 1
2 Σ̂

gives the result

[ĤD, Ŝ] = iα × p̂. (4.28)

Because Ŝ does not commute with the Dirac Hamiltonian, the corresponding
observable is not a conserved quantity. However, from (4.21) and (4.28) it can be
seen that the sum Ĵ = L̂+ Ŝ commutes with the Hamiltonian of the Dirac equation,

[
ĤD, Ĵ

]
≡

[
ĤD, L̂ + Ŝ

]
= 0.

Hence Ŝ can be identified as the operator for the intrinsic angular momentum (the
spin) of a particle. The total angular momentum of the particle, associated with the
operator Ĵ = L̂ + Ŝ, is a conserved quantity.

Because the 4× 4 matrix operator Ŝ is defined in terms of the Pauli spin-matrices,

Ŝ = 1
2 Σ̂ =

1
2

(
σ 0
0 σ

)
, (4.29)

its components have the same commutation relations as the Pauli spin-matrices,
for example [Ŝ x, Ŝ y]= iŜ z. These are the same commutation relations satisfied by
the operators for orbital angular momentum, [L̂x, L̂y]= iL̂z, etc. Therefore, from
the arguments of Section 2.3.5, it follows that spin is quantised in exactly the same
way as orbital angular momentum. Consequently, the total spin s can be identified
from the eigenvalue of the operator,

Ŝ
2
=

1
4

(Σ̂2
x + Σ̂

2
y + Σ̂

2
z ) =

3
4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



,
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for which Ŝ
2|s,ms〉 = s(s + 1)|s,ms〉. Hence, for any Dirac spinor ψ,

Ŝ
2
ψ = s(s + 1)ψ = 3

4ψ,

and thus a particle satisfying the Dirac equation has intrinsic angular momentum
s = 1

2 . Furthermore, it can be shown (see Appendix B.1) that the operator µ̂ giving
the intrinsic magnetic moment of a particle satisfying the Dirac equation is given by

µ̂ =
q
m

Ŝ, (4.30)

where q and m are respectively the charge and mass of the particle. Hence Ŝ has
all the properties of the quantum-mechanical spin operator for a Dirac spinor.
The Dirac equation therefore provides a natural description of spin-half particles.
This is a profound result, spin emerges as a direct consequence of requiring the
wavefunction to satisfy the Dirac equation.

4.5 Covariant form of the Dirac equation

Up to this point the Dirac equation has been expressed in terms of the α- and β-
matrices. This naturally brings out the connection with spin. However, the Dirac
equation is usually expressed in the form which emphasises its covariance. This is
achieved by first pre-multiplying the Dirac equation of (4.7) by β to give

iβαx
∂ψ

∂x
+ iβαy

∂ψ

∂y
+ iβαz

∂ψ

∂z
+ iβ

∂ψ

∂t
− β2mψ = 0. (4.31)

By defining the four Dirac γ-matrices as

γ0 ≡ β, γ1 ≡ βαx, γ2 ≡ βαy and γ3 ≡ βαz,

and using β2 = I, equation (4.31) becomes

iγ0 ∂ψ

∂t
+ iγ1 ∂ψ

∂x
+ iγ2 ∂ψ

∂y
+ iγ3 ∂ψ

∂z
− mψ = 0.

By labelling the four γ-matrices by the index µ, such that γ µ = (γ0, γ1, γ2, γ3), and
using the definition of the covariant four-derivative

∂µ ≡ (∂0, ∂1, ∂2, ∂3) ≡
(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

the Dirac equation can be expressed in the covariant form

(iγ µ∂µ − m)ψ = 0, (4.32)
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with the index µ being treated as the Lorentz index of a four-vector and, as usual,
summation over repeated indices is implied. Despite the suggestive way in which
(4.32) is written, it is important to realise that the Dirac γ-matrices are not
four-vectors; they are constant matrices which are invariant under Lorentz trans-
formations. Hence, the Lorentz covariance of the Dirac equation, which means that
it applies in all rest frames, is not immediately obvious from Equation (4.32). The
proof of the covariance of the Dirac equation and the derivation of the Lorentz
transformation properties of Dirac spinors is quite involved and is deferred to
Appendix B.2.

The properties of the γ-matrices can be obtained from the properties of the
α- and β-matrices given in (4.9), (4.11) and (4.12). For example, using β2 = I, α2

x = I
and βαx =−αx β, it follows that

(γ1)2 = βαx βαx = −αx ββαx = −α2
x = −I.

Similarly, it is straightforward to show that the products of two γ-matrices satisfy

(γ0)2 = I,

(γk)2 = −I,

and γ µγν = −γνγ µ for µ ! ν,

where the convention used here is that the index k= 1, 2 or 3. The above expres-
sions can be written succinctly as the anticommutation relation

{γ µ, γν} ≡ γ µγν + γνγ µ = 2gµν. (4.33)

The γ0 matrix, which is equivalent to β, is Hermitian and it is straightforward to
show that the other three gamma matrices are anti-Hermitian, for example,

γ1† = (βαx)† = α†x β
† = αx β = −βαx = −γ1,

and hence

γ0† = γ0 and γk† = −γk. (4.34)

Equations (4.33) and (4.34) fully define the algebra of the γ-matrices, which
in itself is sufficient to define the properties of the solutions of the Dirac equa-
tion. Nevertheless, from a practical and pedagogical perspective, it is convenient to
consider a particular representation of the γ-matrices. In the Dirac–Pauli represen-
tation, the γ-matrices are

γ0 = β =

(
I 0
0 −I

)
and γk = βαk =

(
0 σk

−σk 0

)
,
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where the α- and β-matrices are those defined previously. Hence in the Dirac–Pauli
representation,

γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



, γ1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



,

γ2 =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



, γ3 =




0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0



.

(4.35)

4.5.1 The adjoint spinor and the covariant current

In Section 4.3, it was shown that the probability density and the probability current
for a wavefunction satisfying the Dirac equation are respectively given by ρ = ψ†ψ
and j = ψ†αψ. These two expressions can be written compactly as

j µ = (ρ, j) = ψ†γ0γ µψ, (4.36)

which follows from (γ0)2 = 1 and γ0γk = ββαk =αk. By considering the Lorentz
transformation properties of the four components of j µ, as defined in (4.36), it can
be shown (see Appendix B.3) that j µ is a four-vector. Therefore, the continuity
equation (2.20), which expresses the conservation of particle probability,

∂ρ

∂t
+ ∇ · j = 0,

can be written in the manifestly Lorentz-invariant form of a four-vector scalar
product

∂µ j µ = 0.

The expression for the four-vector current, j µ =ψ†γ0γ µψ, can be simplified by
introducing the adjoint spinor ψ, defined as

ψ ≡ ψ†γ0.

The definition of the adjoint spinor allows the four-vector current j µ to be written
compactly as

j µ = ψγ µψ. (4.37)
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For completeness, it is noted that in the Dirac–Pauli representation of the
γ-matrices, the adjoint spinor is simply

ψ = ψ†γ0 = (ψ∗)Tγ0 = (ψ∗1,ψ
∗
2,ψ

∗
3,ψ

∗
4)




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



= (ψ∗1,ψ

∗
2,−ψ∗3,−ψ∗4).

4.6 Solutions to the Dirac equation

The ultimate aim of this chapter is to identify explicit forms for the wavefunctions
of spin-half particles that will be used in the matrix element calculations that fol-
low. It is natural to commence this discussion by looking for free-particle plane
wave solutions of the form

ψ(x, t) = u(E,p)ei(p·x−Et), (4.38)

where u(E,p) is a four-component Dirac spinor and the overall wavefunction
ψ(x, t) satisfies the Dirac equation

(iγ µ∂µ − m)ψ = 0. (4.39)

The position and time dependencies of the plane waves described by (4.38) occur
solely in exponent; the four-component spinor u(E,p) is a function of the energy
and momentum of the particle. Hence the derivatives ∂µψ act only on the exponent
and therefore,

∂0ψ ≡
∂ψ

∂t
= −iEψ, ∂1ψ ≡

∂ψ

∂x
= ipxψ, ∂2ψ = ipyψ and ∂3ψ = ipzψ.

(4.40)

Substituting the relations of (4.40) back into (4.39) gives

(γ0E − γ1 px − γ2 py − γ3 pz − m)u(E,p)ei(p·x−Et) = 0,

and therefore the four-component Dirac spinor u(E,p) satisfies

(γ µpµ − m) u = 0, (4.41)

where, because of the covariance of the Dirac equation, the index µ on the
γ-matrices can be treated as a four-vector index. Equation (4.41), which contains
no derivatives, is the free-particle Dirac equation for the spinor u written in terms
of the four-momentum of the particle.
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4.6.1 Particles at rest

For a particle at rest with p= 0, the free-particle wavefunction is simply

ψ = u(E, 0)e−iEt,

and thus (4.41) reduces to

Eγ0u = mu.

This can be expressed as an eigenvalue equation for the components of the spinor

E




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







φ1

φ2

φ3

φ4



= m




φ1

φ2

φ3

φ4



.

Because γ0 is diagonal, this yields four orthogonal solutions. The first two,

u1(E, 0) = N




1
0
0
0




and u2(E, 0) = N




0
1
0
0



, (4.42)

have positive energy eigenvalues, E = +m. The other two solutions,

u3(E, 0) = N




0
0
1
0




and u4(E, 0) = N




0
0
0
1



, (4.43)

have negative energy eigenvalues, E =−m. In all cases N determines the nor-
malisation of the wavefunction. These four states are also eigenstates of the Ŝ z

operator, as defined in Section 4.4. Hence u1(E, 0) and u2(E, 0) represent spin-up
and spin-down positive energy solutions to the Dirac equation, and u3(E, 0) and
u4(E, 0) represent spin-up and spin-down negative energy solutions. The four solu-
tions to the Dirac equation for a particle at rest, including the time dependence, are
therefore

ψ1 = N




1
0
0
0




e−imt, ψ2 = N




0
1
0
0




e−imt, ψ3 = N




0
0
1
0




e+imt and ψ4 = N




0
0
0
1




e+imt.

4.6.2 General free-particle solutions

The general solutions of the free-particle Dirac equation for a particle with momen-
tum p can be obtained from the solutions for a particle at rest, using the Lorentz
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transformation properties of Dirac spinors derived in Appendix B.2. However, it
is more straightforward to solve directly the Dirac equation for the general plane
wave solution of (4.38). The Dirac equation for the spinor u(E,p) given in (4.41)
when written in full is

(Eγ0 − pxγ
1 − pyγ2 − pzγ

3 − m)u = 0.

This can be expressed in matrix form using the Dirac–Pauli representation of the
γ-matrices, giving

[(
I 0
0 −I

)
E −

(
0 σ · p

−σ · p 0

)
− m

(
I 0
0 I

)]
u = 0, (4.44)

where the 4× 4 matrix multiplying the four-component spinor u has been expressed
in 2 × 2 block matrix form with

σ · p ≡ σx px + σx py + σx pz =

(
pz px − ipy

px + ipy −pz

)
.

Writing the spinor u in terms of two two-component column vectors, uA and uB,

u =
(

uA

uB

)
,

allows (4.44) to be expressed as
(

(E − m)I −σ · p
σ · p −(E + m)I

) (
uA

uB

)
= 0,

giving coupled equations for uA in terms of uB,

uA =
σ · p
E − m

uB, (4.45)

uB =
σ · p
E + m

uA. (4.46)

Two solutions to the free-particle Dirac equation, u1 and u2, can be found by taking
the two simplest orthogonal choices for uA,

uA =

(
1
0

)
and uA =

(
0
1

)
. (4.47)

The corresponding components of uB, given by (4.46), are

uB =
σ · p
E + m

=
1

E + m

(
pz px − ipy

px + ipy −pz

)
uA,
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and thus the first two solutions of the free-particle Dirac equation are

u1(E,p) = N1




1
0
pz

E+m
px+ipy
E+m




and u2(E,p) = N2




0
1

px−ipy
E+m−pz
E+m



,

where N1 and N2 determine the wavefunction normalisation. It should be noted
that whilst the choice of the two orthogonal forms for uA is arbitrary, any other
orthogonal choice would have been equally valid, since a general (E > 0) spinor
can be expressed as a linear combination of u1 and u2. Choosing the forms of uA of
(4.47) is analogous to choosing a particular basis for spin where conventionally the
z-axis is chosen to label the states. The two other solutions of the Dirac equation
can be found by writing

uB =

(
1
0

)
and uB =

(
0
1

)
,

and using (4.45) to give the corresponding components for uA. The four orthogonal
plane wave solutions to the free-particle Dirac equation of the form

ψi = ui(E,p)ei(p·x−Et)

are therefore

u1 = N1




1
0
pz

E+m
px+ipy
E+m



, u2 = N2




0
1

px−ipy
E+m−pz
E+m



, u3 = N3




pz
E−m

px+ipy
E−m
1
0




and

u4 = N4




px−ipy
E−m−pz
E−m
0
1



. (4.48)

If any one of these four spinors is substituted back into the Dirac equation, the
Einstein energy–momentum relation E2 = p2 +m2 is recovered. In the limit p= 0,
the spinors u1 and u2 reduce to the E > 0 spinors for a particle at rest given in (4.42).
Hence u1 and u2 can be identified as the positive energy spinors with

E = +
∣∣∣∣
√

p2 + m2
∣∣∣∣ ,

and u3 and u4 are the negative energy particle spinors with

E = −
∣∣∣∣
√

p2 + m2
∣∣∣∣ .
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The same identification of u1 and u2 as being the positive energy spinors, and u3

and u4 as the negative energy spinors, can be reached by transforming the solu-
tions for a particle at rest into the frame where the particle has momentum p (see
Appendix B.2).

At this point it is reasonable to ask whether it is possible to interpret all four
solutions of (4.48) as having E > 0. The answer is no, as if this were the case, the
exponent of the wavefunction,

ψ(x, t) = u(E,p)ei(p·x−Et),

would be the same for all four solutions. In this case the four solutions no longer
would be independent since, for example, it would be possible to express u1 as the
linear combination

u1 =
pz

E + m
u3 +

px + ipy
E + m

u4.

Hence, there are only four independent solutions to the Dirac equation when two
are taken to have E < 0; it is not possible to avoid the need for the negative energy
solutions. The same conclusion can be reached from the fact that the Dirac Hamil-
tonian is a 4 × 4 matrix with trace zero, and therefore the sum of its eigenvalues is
zero, implying equal numbers of positive and negative energy solutions.

4.7 Antiparticles

The Dirac equation provides a beautiful mathematical framework for the relativis-
tic quantum mechanics of spin-half fermions in which the properties of spin and
magnetic moments emerge naturally. However, the presence of negative energy
solutions is unavoidable. In quantum mechanics, a complete set of basis states is
required to span the vector space, and therefore the negative energy solutions can-
not simply be discarded as being unphysical. It is therefore necessary to provide a
physical interpretation for the negative energy solutions.

4.7.1 The Dirac sea interpretation

If negative energy solutions represented accessible negative energy particle states,
one would expect that all positive energy electrons would fall spontaneously into
these lower energy states. Clearly this does not occur. To avoid this apparent contra-
diction, Dirac proposed that the vacuum corresponds to the state where all negative
energy states are occupied, as indicated in Figure 4.1. In this “Dirac sea” picture,
the Pauli exclusion principle prevents positive energy electrons from falling into
the fully occupied negative energy states. Furthermore, a photon with energy
E > 2me could excite an electron from a negative energy state, leaving a hole in
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me
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me

γ → e+e- e+e- → γ

γγ
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. . . . 

. . . . 

. . . . 

. . . . !Fig. 4.1 The Dirac interpretation of negative energy solutions as holes in the vacuum that correspond to antiparticle
states.

the vacuum. A hole in the vacuum would correspond to a state with more energy
(less negative energy) and a positive charge relative to the fully occupied vacuum.
In this way, holes in the Dirac sea correspond to positive energy antiparticles with
the opposite charge to the particle states. The Dirac sea interpretation thus pro-
vides a picture for e+e− pair production and also particle–antiparticle annihilation
(shown in Figure 4.1). The discovery of positively charged electrons in cosmic-ray
tracks in a cloud chamber, Anderson (1933), provided the experimental confir-
mation that the antiparticles predicted by Dirac corresponded to physical observ-
able states.

Nowadays, the Dirac sea picture of the vacuum is best viewed in terms of his-
torical interest. It has a number of conceptual problems. For example, antiparticle
states for bosons are also observed and in this case the Pauli exclusion principle
does not apply. Furthermore, the fully occupied Dirac sea implies that the vacuum
has infinite negative energy and it is not clear how this can be interpreted physi-
cally. The negative energy solutions are now understood in terms of the Feynman–
Stückelberg interpretation.

4.7.2 The Feynman–Stückelberg interpretation

It is an experimentally established fact that for each fundamental spin-half parti-
cle there is a corresponding antiparticle. The antiparticles produced in accelerator
experiments have the opposite charges compared to the corresponding particle.
Apart from possessing different charges, antiparticles behave very much like parti-
cles; they propagate forwards in time from the point of production, ionise the gas in
tracking detectors, produce the same electromagnetic showers in the calorimeters
of large collider particle detectors, and undergo many of the same interactions as
particles. It is not straightforward to reconcile these physical observations with the
negative energy solutions that emerge from the abstract mathematics of the Dirac
equation.
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Eγ = 2E Eγ = 2E

e-(E > 0)

e-(E < 0)

e-(E > 0)

e+(E > 0)

γ γ

!Fig. 4.2 (left) The process of e+e− annihilation in terms of a positive energy electron producing a photon and a neg-
ative energy electron propagating backwards in time. (right) The Feynman–Stückelberg interpretation with
a positive energy positron propagating forwards in time. In both diagrams, time runs from the left to right.

The modern interpretation of the negative energy solutions, due to Stückelberg
and Feynman, was developed in the context of quantum field theory. The E < 0
solutions are interpreted as negative energy particles which propagate backwards
in time. These negative energy particle solutions correspond to physical positive
energy antiparticle states with opposite charge, which propagate forwards in time.
Since the time dependence of the wavefunction, exp (−iEt), is unchanged under
the simultaneous transformation E→− E and t→− t these two pictures are math-
ematically equivalent,

exp {−iEt} ≡ exp {−i(−E)(−t)}.

To illustrate this idea, Figure 4.2 shows the process of electron–positron
annihilation in terms of negative energy particle solutions and in the Feynman–
Stückelberg interpretation of these solutions as positive energy antiparticles. In the
left plot, an electron of energy E emits a photon with energy 2E and, to conserve
energy, produces a electron with energy −E, which being a negative energy solution
of the Dirac equation propagates backwards in time. In the Feynman–Stückelberg
interpretation, shown on the right, a positive energy positron of energy E annihi-
lates with the electron with energy E to produce a photon of energy 2E. In this case,
both the particle and antiparticle propagate forwards in time. It should be noted that
although antiparticles propagate forwards in time, in a Feynman diagram they are
still drawn with an arrow in the “backwards in time” sense, as shown in the left
plot of Figure 4.2.

4.7.3 Antiparticle spinors

In principle, it is possible to perform calculations with the negative energy par-
ticle spinors u3 and u4. However, this necessitates remembering that the energy
which appears in the definition of the spinor is the negative of the physical energy.
Furthermore, because u3 and u4 are interpreted as propagating backwards in time,
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the momentum appearing in the spinor is the negative of the physical momentum.
To avoid this possible confusion, it is more convenient to work with antiparticle
spinors written in terms of the physical momentum and physical energy,
E =+ |

√
p2 +m2 |. Following the Feynman–Stückelberg interpretation, the negative

energy particle spinors, u3 and u4, can be rewritten in terms of the physical positive
energy antiparticle spinors, v1 and v2, simply by reversing the signs of E and p
to give

v1(E,p)e−i(p·x−Et) = u4(−E,−p)ei[−p·x−(−E)t]

v2(E,p)e−i(p·x−Et) = u3(−E,−p)ei[−p·x−(−E)t].

A more formal approach to identifying the antiparticle spinors is to look for
solutions of the Dirac equation of the form

ψ(x, t) = v(E,p)e−i(p·x−Et), (4.49)

where the signs in the exponent are reversed with respect to those of (4.38). For
E > 0, the wavefunctions of (4.49) still represent negative energy solutions in the
sense that

i
∂

∂t
ψ = −Eψ.

Substituting the wavefunction of (4.49) into the Dirac equation, (iγ µ∂µ − m)ψ= 0,
gives

(−γ0E + γ1 px + γ
2 py + γ3 pz − m)v = 0,

which can be written as

(γ µpµ + m)v = 0.

This is the Dirac equation in terms of momentum for the v spinors. Proceeding as
before and writing

v =

(
vA
vB

)
,

leads to

vA =
σ · p
E + m

vB and vB =
σ · p
E − m

vA,
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giving the solutions

v1 = N




px−ipy
E+m−pz
E+m
0
1



, v2 = N




pz
E+m

px+ipy
E+m
1
0



, v3 = N




1
0
pz

E−m
px+ipy
E−m




and

v4 = N




0
1

px−ipy
E−m−pz
E−m



, (4.50)

where

E = +
∣∣∣∣
√

p2 + m2
∣∣∣∣

for v1 and v2, and

E = −
∣∣∣∣
√

p2 + m2
∣∣∣∣

for v3 and v4. Hence we have now identified eight solutions to the free particle
Dirac equation, given in (4.48) and (4.50). Of these eight solutions, only four
are independent. In principle it would be possible to perform calculations using
only the u-spinors, or alternatively using only the v-spinors. Nevertheless, it is
more natural to work with the four solutions for which the energy that appears
in the spinor is the positive physical energy of the particle/antiparticle, namely
{u1, u2, v1, v2}.

To summarise, in terms of the physical energy, the two particle solutions to the
Dirac equation are

ψi = uie+i(p·x−Et)

with

u1(p) =
√

E + m




1
0
pz

E+m
px+ipy
E+m




and u2(p) =
√

E + m




0
1

px−ipy
E+m−pz
E+m



, (4.51)

and the two antiparticle solutions are

ψi = vie−i(p·x−Et)
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with

v1(p) =
√

E + m




px−ipy
E+m−pz
E+m
0
1




and v2(p) =
√

E + m




pz
E+m

px+ipy
E+m
1
0



. (4.52)

Wavefunction normalisation
The spinors in (4.51) and (4.52) have been normalised to the conventional 2E par-
ticles per unit volume. This required normalisation factor can be found from the
definition of probability density, ρ = ψ†ψ, which for ψ = u1(p) exp i(p · x − Et) is

ρ = ψ†ψ = (ψ∗)Tψ = u†1u1.

Using the explicit form for u1 of (4.48) gives

u†1u1 = |N|2

1 +

p2
z

(E + m)2 +
p2

x + p2
y

(E + m)2


 = |N|2

2E
E + m

.

Hence, to normalise the wavefunctions to 2E particles per unit volume implies

N =
√

E + m.

The same normalisation factor is obtained for the u and v spinors.

4.7.4 Operators and the antiparticle spinors

There is a subtle, but nevertheless important, point related to using the antiparticle
spinors written in terms of the physical energy and momenta,

ψ = v(E,p)e−i(p·x−Et).

The action of the normal quantum mechanical operators for energy and momentum
do not give the physical quantities,

Ĥψ = i
∂ψ

∂t
= −Eψ and p̂ψ = −i∇ψ = −pψ.

The minus signs should come as no surprise; the antiparticle spinors are still the
negative energy particle solutions of the Dirac equation, albeit expressed in terms of
the physical (positive) energy E and physical momentum p of the antiparticle. The
operators which give the physical energy and momenta of the antiparticle spinors
are therefore

Ĥ(v) = −i
∂

∂t
and p̂(v) = +i∇,
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where the change of sign reflects the Feynman–Stückelberg interpretation of the
negative energy solutions. Furthermore, with the replacement (E,p) → (−E,−p),
the orbital angular momentum of a particle

L = r × p→ −L.

In order for the commutator [ĤD, L̂+ Ŝ] to remain zero for the antiparticle spinors,
the operator giving the physical spin states of the v spinors must be

Ŝ
(v)
= −Ŝ,

where Ŝ is defined in (4.29). Reverting (very briefly) to the the Dirac sea picture,
a spin-up hole in the negative energy particle sea, leaves the vacuum in a net spin-
down state.

4.7.5 *Charge conjugation

Charge conjugation is an important example of a discrete symmetry transformation
that will be discussed in depth in Chapter 14. The effect of charge conjugation is
to replace particles with the corresponding antiparticles and vice versa. In classical
dynamics, the motion of a charged particle in an electromagnetic field Aµ = (φ,A)
can be obtained by making the minimal substitution

E → E − qφ and p→ p − qA, (4.53)

where φ and A are the scalar and vector potentials of electromagnetism and q is the
charge of the particle. In four-vector notation, (4.53) can be written

pµ → pµ − qAµ. (4.54)

Following the canonical procedure for moving between classical physics and quan-
tum mechanics and replacing energy and momentum by the operators p̂ = −i∇ and
Ê = i∂/∂t, Equation (4.54) can be written in operator form as

i∂µ → i∂µ − qAµ. (4.55)

The Dirac equation for an electron with charge q=− e (where e≡+ |e| is the mag-
nitude of the electron charge) in the presence of an electromagnetic field can be
obtained by making the minimal substitution of (4.55) in the free-particle Dirac
equation, giving

γ µ(∂µ − ieAµ)ψ + imψ = 0. (4.56)

The equivalent equation for the positron can be obtained by first taking the complex
conjugate of (4.56) and then pre-multiplying by −iγ2 to give

−iγ2(γ µ)∗(∂µ + ieAµ)ψ∗ − mγ2ψ∗ = 0. (4.57)
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In the Dirac–Pauli representation of the γ-matrices, (γ0)∗ = γ0, (γ1)∗ = γ1, (γ2)∗ =
− γ2 and (γ3)∗ = γ3. Using these relations and γ2γ µ =− γ µγ2 for µ! 2, Equation
(4.57) becomes

γ µ(∂µ + ieAµ)iγ2ψ∗ + im iγ2ψ∗ = 0. (4.58)

If ψ′ is defined as

ψ′ = iγ2ψ∗,

then (4.58) can be written

γ µ(∂µ + ieAµ)ψ′ + imψ′ = 0. (4.59)

The equation satisfied by ψ′ is the same as that for ψ (4.56), except that the ieAµ
term now appears with the opposite sign. Hence, ψ′ is a wavefunction describing a
particle which has the same mass as the original particle but with opposite charge;
ψ′ can be interpreted as the antiparticle wavefunction. In the Dirac–Pauli represen-
tation, the charge conjugation operator Ĉ, which transforms a particle wavefunction
into the corresponding antiparticle wavefunction, therefore can be identified as

ψ′ = Ĉψ = iγ2ψ∗.

The identification of Ĉ as the charge conjugation operator can be confirmed by
considering its effect on the particle spinor

ψ = u1ei(p·x−Et).

The corresponding charge-conjugated wavefunction ψ′ is

ψ′ = Ĉψ = iγ2ψ∗ = iγ2u∗1e−i(p·x−Et).

The spinor part of ψ′ is

iγ2u∗1 = i




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0




√
E + m




1
0
pz

E+m
px+ipy
E+m




∗

=
√

E + m




px−ipy
E+m−pz
E+m
0
1



,

which is the antiparticle spinor v1 identified in Section 4.7.3. The effect of the
charge-conjugation operator on the u1 particle spinor is

ψ = u1ei(p·x−Et) Ĉ−→ ψ′ = v1e−i(p·x−Et),

and likewise (up to a unobservable overall complex phase) the effect on u2 is

ψ = u2ei(p·x−Et) Ĉ−→ ψ′ = v2e−i(p·x−Et).
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Therefore, the effect of the charge-conjugation operator on the particle spinors u1

and u2 is to transform them respectively to the antiparticle spinors v1 and v2.

4.8 Spin and helicity states

For particles at rest, the spinors u1(E, 0) and u2(E, 0) of (4.42) are clearly eigen-
states of

Ŝz =
1
2Σz =

1
2

(
σz 0
0 σz

)
= 1

2




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



,

and therefore represent “spin-up” and “spin-down” eigenstates of the z-component
of the spin operator. However, from the forms of the u and v spinors, given in (4.51)
and (4.52), it is immediately apparent that the u1, u2, v1 and v2 spinors are not in
general eigenstates of Ŝz. Nevertheless, for particles/antiparticles travelling in the
±z-direction (p= ± pẑ), the u and v spinors are

u1 = N




1
0
±p

E+m
0



, u2 = N




0
1
0
∓p

E+m



, v1 = N




0
∓p

E+m
0
1




and v2 = N




±p
E+m
0
1
0



,

and therefore

Ŝz u1(E, 0, 0,±p) = + 1
2 u1(E, 0, 0,±p),

Ŝz u2(E, 0, 0,±p) = − 1
2 u2(E, 0, 0,±p).

For antiparticle spinors, the physical spin is given by the operator Ŝ (v)
z =− Ŝz and

therefore

Ŝ (v)
z v1(E, 0, 0,±p) ≡ −Ŝzv1(E, 0, 0,±p) = + 1

2v1(E, 0, 0,±p),

Ŝ (v)
z v2(E, 0, 0,±p) ≡ −Ŝzv2(E, 0, 0,±p) = − 1

2v2(E, 0, 0,±p).

Hence for a particle/antiparticle with momentum p= (0, 0,±p), the u1 and v1
spinors represent spin-up states and the u2 and v2 spinors represent spin-down
states, as indicated in Figure 4.3.

z
u1 u1u2 u2

z
v2v1 v1 v2!Fig. 4.3 The u1, u2, v1 and v2 spinors for particles/antiparticles travelling in the±z-direction.
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4.8.1 Helicity

In the chapters that follow, interaction cross sections will be analysed in terms of
the spin states of the particles involved. Since the u1, u2, v1 and v2 spinors only
map onto easily identified spin states for particles travelling in the z-direction, their
use for this purpose is limited. Furthermore, since Ŝz does not commute with the
Dirac Hamiltonian, [ĤD, Ŝz] ! 0, it is not possible to define a basis of simulta-
neous eigenstates of Ŝz and ĤD. Rather than defining basis states in terms of an
external axis, it is more natural to introduce to concept of helicity. As illustrated in
Figure 4.4, the helicity h of a particle is defined as the normalised component of its
spin along its direction of flight,

h ≡ S · p
p
. (4.60)

For a four-component Dirac spinor, the helicity operator is

ĥ =
Σ̂ · p̂
2p
=

1
2p

(
σ · p̂ 0

0 σ · p̂

)
, (4.61)

where p̂ is the momentum operator. From the form of the Dirac Hamiltonian (4.18),
it follows that [ĤD, Σ̂ · p̂]= 0 and therefore ĥ commutes with the free-particle
Hamiltonian. Consequently, it is possible to identify spinor states which are simul-
taneous eigenstates of the free particle Dirac Hamiltonian and the helicity oper-
ator. For a spin-half particle, the component of spin measured along any axis is
quantised to be either ±1/2. Consequently, the eigenvalues of the helicity operator
acting on a Dirac spinor are ±1/2. The two possible helicity states for a spin-
half fermion are termed right-handed and left-handed helicity states, as shown in
Figure 4.5. Whilst helicity is an important concept in particle physics, it is impor-
tant to remember that helicity is not Lorentz invariant; for particles with mass, it
is always possible to transform into a frame in which the direction of the parti-
cle is reversed. The related Lorentz-invariant concept of chirality is introduced in
Chapter 6.

h = S · p

S

p

p!Fig. 4.4 The de+nition of helicity as the projection of the spin of a particle along its direction of motion.
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RH LH

h = h =−1
2+ −1

2-!Fig. 4.5 The two helicity eigenstates for a spin-half fermion. The h = +1/2 and h = −1/2 states are respectively
referred to as right-handed (RH) and left-handed (LH) helicity states.

The simultaneous eigenstates of the free particle Dirac Hamiltonian and the
helicity operator are solutions to the Dirac equation which also satisfy the eigen-
value equation,

ĥu = λu.

Writing the spinor in terms of two two-component column vectors uA and uB, and
using the helicity operator defined above, this eigenvalue equation can be written

1
2p

(
σ · p 0

0 σ · p

) (
uA

uB

)
= λ

(
uA

uB

)
,

implying that

(σ · p)uA = 2p λuA, (4.62)

(σ · p)uB = 2p λuB. (4.63)

The eigenvalues of the helicity operator can be obtained by multiplying (4.62) by
σ · p and noting (see Problem 4.10) that (σ · p)2 = p2, from which it follows that

p2uA = 2pλ(σ · p)uA = 4p2λ2uA,

and therefore, as anticipated, λ = ±1/2. Because the spinors corresponding to the
two helicity states are also eigenstates of the Dirac equation, uA and uB are related
by (4.46),

(σ · p)uA = (E + m)uB,

which when combined with (4.62) gives

uB = 2λ
( p

E + m

)
uA. (4.64)

Therefore for a helicity eigenstate, uB is proportional to uA and once (4.62) is
solved to obtain uA, the corresponding equation for uB (4.63) is automatically
satisfied.

Equation (4.62) is most easily solved by expressing the helicity states in terms
of spherical polar coordinates where

p = (p sin θ cos φ, p sin θ sin φ, p cos θ),
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and the helicity operator can be written as

1
2p

(σ · p) =
1
2p

(
pz px − ipy

px + ipy −pz

)

=
1
2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

Writing the components of uA as

uA =

(
a
b

)
,

the eigenvalue equation of (4.62) becomes
(

cos θ sin θe−iφ

sin θeiφ − cos θ

) (
a
b

)
= 2λ

(
a
b

)
,

and therefore the ratio of b/a is equal to

b
a
=

2λ − cos θ
sin θ

eiφ.

For the right-handed helicity state with λ = +1/2,

b
a
=

1 − cos θ
sin θ

eiφ =
2 sin2

(
θ
2

)

2 sin
(
θ
2

)
cos

(
θ
2

)eiφ = eiφ
sin

(
θ
2

)

cos
(
θ
2

) .

Using the relation between uA and uB from (4.64), the right-handed helicity particle
spinor, denoted u↑, then can be identified as

u↑ = N




cos
(
θ
2

)

eiφ sin
(
θ
2

)

p
E+m cos

(
θ
2

)

p
E+m eiφ sin

(
θ
2

)



,

where N =
√

E + m is the overall normalisation factor. The left-handed helicity
spinor with h=− 1/2, denoted u↓, can be found in the same manner and thus the
right-handed and left-handed helicity particle spinors, normalised to 2E particles
per unit volume, are

u↑ =
√

E + m




c
seiφ

p
E+m c
p

E+m seiφ




u↓ =
√

E + m




−s
ceiφ

p
E+m s

− p
E+m ceiφ



, (4.65)
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LH

Particles

u↑ u↓

RH LH

Antiparticles

v↑ v↓

RH

!Fig. 4.6 The helicity eigenstates for spin-half particles and antiparticles.

where s= sin
(
θ
2

)
and c= cos

(
θ
2

)
. The corresponding antiparticle states, v↑ and v↓,

are obtained in the same way remembering that the physical spin of an antiparticle
spinor is given by Ŝ

(v)
=− Ŝ, and hence for the h = +1/2 antiparticle state

(
Σ · p
2p

)
v↑ = − 1

2v↑.

The resulting normalised antiparticle helicity spinors are

v↑ =
√

E + m




p
E+m s

− p
E+m ceiφ

−s
ceiφ



v↓ =

√
E + m




p
E+m c
p

E+m seiφ

c
seiφ



. (4.66)

The four helicity states of (4.65) and (4.66), which correspond to the states shown
in Figure 4.6, form the helicity basis that is used to describe particles and antipar-
ticles in the calculations that follow. In many of these calculations, the energies
of the particles being considered are much greater than their masses. In this ultra-
relativistic limit (E / m) the helicity eigenstates can be approximated by

u↑ ≈
√

E




c
seiφ

c
seiφ



, u↓ ≈

√
E




−s
ceiφ

s
−ceiφ



, v↑ ≈

√
E




s
−ceiφ

−s
ceiφ




and v↓ ≈
√

E




c
seiφ

c
seiφ



. (4.67)

It should be remembered that the above spinors all can be multiplied by an overall
complex phase with no change in any physical predictions.

4.9 Intrinsic parity of Dirac fermions

Charge conjugation, discussed in Section 4.7.5, is one example of a discrete sym-
metry transformation, particle ↔ antiparticle. Another example is the parity
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transformation, which corresponds to spatial inversion through the origin,

x′ = −x, y′ = −y, z′ = −z and t′ = t.

Parity is an important concept in particle physics because both the QED and QCD
interactions always conserve parity. To understand why this is the case (which is
explained in Chapter 11), we will need to use the parity transformation properties
of Dirac spinors and will need to identify the corresponding parity operator which
acts on solutions of the Dirac equation.

Suppose ψ is a solution of the Dirac equation and ψ′ is the corresponding solu-
tion in the “parity mirror” obtained from the action of the parity operator P̂
such that

ψ→ ψ′ = P̂ψ.

From the definition of the parity operation, the effect of two successive parity
transformations is to recover the original wavefunction. Consequently P̂2 = I
and thus

ψ′ = P̂ψ ⇒ P̂ψ′ = ψ.

The form of the parity operator can be deduced by considering a wavefunction
ψ(x, y, z, t) which satisfies the free-particle Dirac equation,

iγ1 ∂ψ

∂x
+ iγ2 ∂ψ

∂y
+ iγ3 ∂ψ

∂z
− mψ = −iγ0 ∂ψ

∂t
. (4.68)

The parity transformed wavefunction ψ′(x′, y′, z′, t′)= P̂ψ(x, y, z, t) must satisfy the
Dirac equation in the new coordinate system

iγ1 ∂ψ
′

∂x′
+ iγ2 ∂ψ

′

∂y′
+ iγ3 ∂ψ

′

∂z′
− mψ′ = −iγ0 ∂ψ

′

∂t′
. (4.69)

Writing ψ= P̂ψ′, equation (4.68) becomes

iγ1P̂
∂ψ′

∂x
+ iγ2P̂

∂ψ′

∂y
+ iγ3P̂

∂ψ′

∂z
− mP̂ψ′ = −iγ0P̂

∂ψ′

∂t
.

Premultiplying by γ0 and expressing the derivatives in terms of the primed system
(which introduces minus signs for all the space-like coordinates) gives

−iγ0γ1P̂
∂ψ′

∂x′
− iγ0γ2P̂

∂ψ′

∂y′
− iγ0γ3P̂

∂ψ′

∂z′
− mγ0P̂ψ′ = −iγ0γ0P̂

∂ψ′

∂t′
,
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which using γ0γk =− γkγ0 can be written

iγ1γ0P̂
∂ψ′

∂x′
+ iγ2γ0P̂

∂ψ′

∂y′
+ iγ3γ0P̂

∂ψ′

∂z′
− mγ0P̂ψ′ = −iγ0γ0P̂

∂ψ′

∂t′
. (4.70)

In order for (4.70) to reduce to the desired form of (4.69), γ0P̂ must be proportional
to the 4 × 4 identity matrix,

γ0P̂ ∝ I.

In addition, P̂2 = I and therefore the parity operator for Dirac spinors can be iden-
tified as either

P̂ = +γ0 or P̂ = −γ0.

It is conventional to choose P̂=+ γ0 such that under the parity transformation, the
form of the Dirac equation is unchanged provided the Dirac spinors transform as

ψ→ P̂ψ = γ0ψ. (4.71)

The intrinsic parity of a fundamental particle is defined by the action of the parity
operator P̂= γ0 on a spinor for a particle at rest. For example, the u1 spinor for a
particle at rest given by (4.42), is an eigenstate of the parity operator with

P̂u1 = γ
0u1 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




√
2m




1
0
0
0



= +u1.

Similarly, P̂u2 =+ u2, P̂v1 =− v1 and P̂v2 =− v2. Hence the intrinsic parity of a
fundamental spin-half particle is opposite to that of a fundamental spin-half
antiparticle.

The conventional choice of P̂=+ γ0 rather than P̂=− γ0, corresponds to defin-
ing the intrinsic parity of particles to be positive and the intrinsic parity of antipar-
ticles to be negative,

P̂u(m, 0) = +u(m, 0) and P̂v(m, 0) = −v(m, 0).

Since particles and antiparticles are always created and destroyed in pairs, this
choice of sign has no physical consequence. Finally, it is straightforward to verify
that the action of the parity operator on Dirac spinors corresponding to a particle
with momentum p reverses the momentum but does not change the spin state, for
example

P̂u1(E,p) = +u1(E,−p).
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Summary

This chapter described the foundations of relativistic quantum mechanics and it is
worth reiterating the main points. The formulation of relativistic quantum mechan-
ics in terms of the Dirac equation, which is linear in both time and space derivatives,

ĤDψ = (α · p̂ + βm)ψ = i
∂ψ

∂t
,

implies new degrees of freedom of the wavefunction. Solutions to the Dirac equa-
tion are represented by four-component Dirac spinors. These solutions provide
a natural description of the spin of the fundamental fermions and antifermions.
The E < 0 solutions to the Dirac equation are interpreted as negative energy parti-
cles propagating backwards in time, or equivalently, the physical positive energy
antiparticles propagating forwards in time.

The Dirac equation is usually expressed in terms of four γ-matrices,

(iγ µ∂µ − m)ψ = 0.

The properties of the solutions to the Dirac equation are fully defined by the algebra
of the γ-matrices. Nevertheless, explicit free-particle solutions were derived using
the Dirac–Pauli representation. The four-vector probability current can be written
in terms of the γ-matrices

j µ = ψ†γ0γ µψ = ψγ µψ,

where ψ is the adjoint spinor defined as ψ=ψ†γ0. The four-vector current will play
a central role in the description of particle interactions through the exchange of
force-carrying particles.

The solutions to the Dirac equation provide the relativistic quantum mechanical
description of spin-half particles and antiparticles. In particular the states u↑, u↓,
v↑ and v↓, which are simultaneous eigenstates of the Dirac Hamiltonian and the
helicity operator, form a suitable basis for the calculations of cross sections and
decay rates that follow.

Finally, two discrete symmetry transformations were introduced, charge conju-
gation and parity, with corresponding operators

ψ→ Ĉψ = iγ2ψ∗ and ψ→ P̂ψ = γ0ψ.

The transformation properties of the fundamental interactions under parity and
charge-conjugation operations will be discussed in detail in the context of the weak
interaction.


